Python实现简单的神经网络2
2018-04-11阅读 4480

Neural Network Class


class NeuralNet():
def __init__(self, n_inputs, n_outputs, n_hidden):
self.n_inputs = n_inputs
self.n_outputs = n_outputs
self.hidden = n_hidden
# Initialize weight matrices and bias vectors
self.W_h = np.random.randn(self.n_inputs, self.hidden)
self.b_h = np.zeros((1, self.hidden))
self.W_o = np.random.randn(self.hidden, self.n_outputs)
self.b_o = np.zeros((1, self.n_outputs))
def sigmoid(self, a):
return 1 / (1 + np.exp(-a))
def forward_pass(self, X):
"""
Propagates the given input X forward through the net.
Returns:
A_h: matrix with activations of all hidden neurons for all input examples
O_h: matrix with outputs of all hidden neurons for all input examples
A_o: matrix with activations of all output neurons for all input examples
O_o: matrix with outputs of all output neurons for all input examples
"""
# Compute activations and outputs of hidden units
A_h = np.dot(X, self.W_h) + self.b_h
O_h = np.tanh(A_h)
# Compute activations and outputs of output units
A_o = np.dot(O_h, self.W_o) + self.b_o
O_o = self.sigmoid(A_o)
outputs = {
"A_h": A_h,
"A_o": A_o,
"O_h": O_h,
"O_o": O_o,
}
return outputs
def cost(self, y_true, y_predict, n_samples):
"""
Computes and returns the cost over all examples
"""
# same cost function as in logistic regression
cost = (- 1 / n_samples) * np.sum(y_true * np.log(y_predict) + (1 - y_true) * (np.log(1 - y_predict)))
cost = np.squeeze(cost)
assert isinstance(cost, float)
return cost
def backward_pass(self,  X, Y, n_samples, outputs):
"""
Propagates the errors backward through the net.
Returns:
dW_h: partial derivatives of loss function w.r.t hidden weights
db_h: partial derivatives of loss function w.r.t hidden bias
dW_o: partial derivatives of loss function w.r.t output weights
db_o: partial derivatives of loss function w.r.t output bias
"""
dA_o = (outputs["O_o"] - Y)
dW_o = (1 / n_samples) * np.dot(outputs["O_h"].T, dA_o)
db_o = (1 / n_samples) * np.sum(dA_o)
dA_h = (np.dot(dA_o, self.W_o.T)) * (1 - np.power(outputs["O_h"], 2))
dW_h = (1 / n_samples) * np.dot(X.T, dA_h)
db_h = (1 / n_samples) * np.sum(dA_h)
gradients = {
"dW_o": dW_o,
"db_o": db_o,
"dW_h": dW_h,
"db_h": db_h,
}
return gradients
def update_weights(self, gradients, eta):
"""
Updates the model parameters using a fixed learning rate
"""
self.W_o = self.W_o - eta * gradients["dW_o"]
self.W_h = self.W_h - eta * gradients["dW_h"]
self.b_o = self.b_o - eta * gradients["db_o"]
self.b_h = self.b_h - eta * gradients["db_h"]
def train(self, X, y, n_iters=500, eta=0.3):
"""
Trains the neural net on the given input data
"""
n_samples, _ = X.shape
for i in range(n_iters):
outputs = self.forward_pass(X)
cost = self.cost(y, outputs["O_o"], n_samples=n_samples)
gradients = self.backward_pass(X, y, n_samples, outputs)
if i % 100 == 0:
print(f'Cost at iteration {i}: {np.round(cost, 4)}')
self.update_weights(gradients, eta)
def predict(self, X):
"""
Computes and returns network predictions for given dataset
"""
outputs = self.forward_pass(X)
y_pred = [1 if elem >= 0.5 else 0 for elem in outputs["O_o"]]
return np.array(y_pred)[:, np.newaxis]

初始化并训练神经网络


nn = NeuralNet(n_inputs=2, n_hidden=6, n_outputs=1)
print("Shape of weight matrices and bias vectors:")
print(f'W_h shape: {nn.W_h.shape}')
print(f'b_h shape: {nn.b_h.shape}')
print(f'W_o shape: {nn.W_o.shape}')
print(f'b_o shape: {nn.b_o.shape}')
print()
print("Training:")
nn.train(X_train, y_train, n_iters=2000, eta=0.7)

Shape of weight matrices and bias vectors:

W_h shape: (2, 6)

b_h shape: (1, 6)

W_o shape: (6, 1)

b_o shape: (1, 1)


Training:

Cost at iteration 0: 1.0872

Cost at iteration 100: 0.2723

Cost at iteration 200: 0.1712

Cost at iteration 300: 0.1386

Cost at iteration 400: 0.1208

Cost at iteration 500: 0.1084

Cost at iteration 600: 0.0986

Cost at iteration 700: 0.0907

Cost at iteration 800: 0.0841

Cost at iteration 900: 0.0785

Cost at iteration 1000: 0.0739

Cost at iteration 1100: 0.0699

Cost at iteration 1200: 0.0665

Cost at iteration 1300: 0.0635

Cost at iteration 1400: 0.061

Cost at iteration 1500: 0.0587

Cost at iteration 1600: 0.0566

Cost at iteration 1700: 0.0547

Cost at iteration 1800: 0.0531

Cost at iteration 1900: 0.0515

测试神经网络


n_test_samples, _ = X_test.shape
y_predict = nn.predict(X_test)
print(f"Classification accuracy on test set: {(np.sum(y_predict == y_test)/n_test_samples)*100} %")

Classification accuracy on test set: 98.4 %


可视化决策边界

X_temp, y_temp = make_circles(n_samples=60000, noise=.5)
y_predict_temp = nn.predict(X_temp)
y_predict_temp = np.ravel(y_predict_temp)


fig = plt.figure(figsize=(8,12))
ax = fig.add_subplot(2,1,1)
plt.scatter(X[:,0], X[:,1], c=y)
plt.xlim([-1.5, 1.5])
plt.ylim([-1.5, 1.5])
plt.xlabel("First feature")
plt.ylabel("Second feature")
plt.title("Training and test set")
ax = fig.add_subplot(2,1,2)
plt.scatter(X_temp[:,0], X_temp[:,1], c=y_predict_temp)
plt.xlim([-1.5, 1.5])
plt.ylim([-1.5, 1.5])
plt.xlabel("First feature")
plt.ylabel("Second feature")
plt.title("Decision boundary")


Out[11]:Text(0.5,1,'Decision boundary')


640?wx_fmt=png